Typical properties of interval maps preserving the Lebesgue measure
نویسندگان
چکیده
منابع مشابه
Maps on positive operators preserving Lebesgue decompositions
Let H be a complex Hilbert space. Denote by B(H)+ the set of all positive bounded linear operators on H. A bijective map φ : B(H)+ → B(H)+ is said to preserve Lebesgue decompositions in both directions if for any quadruple A,B,C,D of positive operators, B = C +D is an A-Lebesgue decomposition of B if and only if φ(B) = φ(C)+φ(D) is a φ(A)-Lebesgue decomposition of φ(B). It is proved that every ...
متن کاملOn the Lebesgue Measure of Li-yorke Pairs for Interval Maps
We investigate the prevalence of Li-Yorke pairs for C and C multimodal maps f with non-flat critical points. We show that every measurable scrambled set has zero Lebesgue measure and that all strongly wandering sets have zero Lebesgue measure, as does the set of pairs of asymptotic (but not asymptotically periodic) points. If f is topologically mixing and has no Cantor attractor, then typical (...
متن کاملOn Preserving Properties of Linear Maps on $C^{*}$-algebras
Let $A$ and $B$ be two unital $C^{*}$-algebras and $varphi:A rightarrow B$ be a linear map. In this paper, we investigate the structure of linear maps between two $C^{*}$-algebras that preserve a certain property or relation. In particular, we show that if $varphi$ is unital, $B$ is commutative and $V(varphi(a)^{*}varphi(b))subseteq V(a^{*}b)$ for all $a,bin A$, then $varphi$ is a $*$-homomorph...
متن کاملNOISE INDUCED DISSIPATION IN LEBESGUE-MEASURE PRESERVING MAPS ON d−DIMENSIONAL TORUS
We consider dissipative systems resulting from the Gaussian and alpha-stable noise perturbations of measure-preserving maps on the d dimensional torus. We study the dissipation time scale and its physical implications as the noise level ε vanishes. We show that nonergodic maps give rise to an O(1/ε) dissipation time whereas ergodic toral automorphisms, including cat maps and their d-dimensional...
متن کاملLebesgue Measure
How do we measure the ”size” of a set in IR? Let’s start with the simplest ones: intervals. Obviously, the natural candidate for a measure of an interval is its length, which is used frequently in differentiation and integration. For any bounded interval I (open, closed, half-open) with endpoints a and b (a ≤ b), the length of I is defined by `(I) = b − a. Of course, the length of any unbounded...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinearity
سال: 2020
ISSN: 0951-7715,1361-6544
DOI: 10.1088/1361-6544/aba5e6